菌种流加
菌种流加来源于发酵工艺的菌种扩大培养技术。菌种扩大培养技术是发酵工业中广泛采用的一种菌种应用技术,在批次发酵中,一般通过“试管→三角瓶→种子罐→发酵罐”的多级扩增,使菌量满足生产需要。在废水脱氮工艺中,除装置内菌种自身增殖外,流加菌种有利于加快菌体积累。废水水质复杂,毒性物质、基质、pH、温度等因素的不稳定,都会对功能菌造成抑制。在受抑制条件下,微生物难以生长。因此菌种流加的优势得以体现。
唐崇俭等〔26〕采用菌种流加式厌氧氨氧化工(http://www.maoyihang.com/sell/l_8/)艺处理制药废水,废水中NH4+-N和NO2--N的质量浓度分别为120~200mg/L和160~240mg/L,菌种流加速率为0.028g/(L•L•d),容积氮去除负荷(NRR)由0.1kg/(m3•d)提高*7.9kg/(m3•d)。并且认为流加菌种不仅增加了反应器内的污泥浓度和厌氧氨氧化菌所占比例,可能还带入了一些未知的生长因子,才能在如此低的流加速率下,实现厌氧氨氧化的高效运行。
菌种流加有望成为低温下运行生物反应器的一种**对策。何成达的研究表明在低温期间为**正常的硝化速率,需要增大反应器的容积。通过向活性污泥系统投加硝化菌的方法可**解决低温时期需要延长泥龄和加大反应器容积的问题。
菌种流加的操作灵活,不需要长期的适应调整时间,是一种应对低温冲击的快速**方法,但是不能从根本上解决低温下反应器运行效率低的问题,仅是增加反应器内功能菌的数量及其在混合污泥的比例,缓解低温对生物处理的影响,在反应器容积有限时不适合长期采用。
接种物对于低温条件下厌氧反应器启动运行具有重要的意义。耐冷菌能够耐受温度波动,比较适合低温废水的处理。如反硝化耐冷菌——荧光假单胞菌能够在低于10℃的条件下降解苯二甲酸〔30〕,也有耐冷菌能在低温下降解氯酚等难降解有机物。目前的研究重点关注了接种耐冷菌在低温产甲烷系统中的意义,如贲岳等〔33〕为确保寒冷地区污水生物处理系统的**运行,接种耐冷微生物,用于生活污水的处理,在6~10℃下,成功地去除污水中86.7%的COD。左剑恶等关注了嗜冷产甲烷菌及其在废水厌氧处理中的应用,从分离培养及生理生化特性、适冷机制和分子生物学研究等方面,对嗜冷产甲烷菌的研究进展进行了**的综述,并指出接种物对于低温条件下厌氧反应器的启动很重要。
氨氧化古菌(AOA)是一类能够在低温下保持活性的古细菌。如果能将AOA应用到低温废水的生物处理中,将会推动生物脱氮工艺的发展。这可以作为今后研究的一个重要方向。
近来国内外已有一些研究涉及低温废水生物脱氮技术,提出了一些新方法。笔者将探讨低温对脱氮工艺的影响,比较低温脱氮工艺的运行策略,并据此指出低温脱氮工艺的研发方向。
低温对脱氮工艺的影响
温度是影响细菌生长和代谢的重要环境条件。*大多数微生物正常生长温度为20~35℃。温度主要是通过影响微生物细胞内某些酶的活性而影响微生物的生长和代谢速率,进而影响污泥产率、污染物的去除效率和速率;温度还会影响污染物降解途径、中间产物的形成以及各种物质在溶液中的溶解度,以及有可能影响到产气量和成分等。低温减弱了微生物体内细胞质的流动性,进而影响了物质传输等代谢过程,并且普遍认为低温将会导致活性污泥的吸附性能和沉降性能下降,以及使微生物群落发生变化。低温对微生物活性的抑制,不同于高温带来的毁灭性影响,其抑制作用通常是可恢复的。