MBR工艺的影响因素及膜污染的控制措施
MBR工艺的影响因素
MBR工艺中,影响其工艺设计和运行效能的因素除废水水质、污泥特性等外,更为重要的应是其膜的运行操作条件,因此,在正确把握废水水质,合理选取工艺设计参数和运行方式外,加强对膜运行过程的控制,就显得更为重要。
在MBR工艺中,膜分离操作的主要影响因素有膜面流速、温度、操作压力等,这些因素对膜通量及膜组件的有效产水效能构成直接的影响。其中的关键运行控制条件因素有膜的操作压力与膜面流速及膜的污染控制。作为MBR工艺中重要的运行控制条件,操作压力和膜面流速均对膜通量有较大的影响,而且它们的影响往往又是相互交叉和制约的,膜面流速一定且浓差极化现象尚不明显时,膜的通量随压力的增大而增大;发生浓差极化后,压力的增大,一方面可以提高膜通量,但将在促进浓差极化的同时,增加通水的阻力。当操作压力一定时,随膜面流速的提高,膜通量相应提高,但当污泥浓度较高时,膜面流速提高到一定值后,由于膜面泥饼阻力的增加,膜通量提高的速率将随膜面流速的提高而降低。
传统的生物脱氮工艺
A/O工艺
在厌氧池中异养菌将污水中的可溶A/O即厌氧-好氧工艺,又称为前置反硝化生物脱氮工艺
在厌氧池中异养菌将污水中的可溶性有机物和淀粉等悬浮物水解为有机酸.随后进入好氧池自养菌在充足供氧条件下进行硝化作用将氨态氮氧化为硝态氮,再通过回流返回至厌氧池,在缺氧条件下,异氧菌在缺氧条件下进行反硝化作用将硝态氮还原为分子态氮,从而实现污水无害化处理.表1列出了A/O处理工艺对氨氮工业废水的研究案例.
承德养殖污水处理设备山东全伟环保-山东潍坊全伟环保水处理设备有限公司
通过对比可以看出,针对不同种类的工业氨氮废水,A/O工艺在实际的工业处理中,针对不同的工业废水,设计的处理能力不同,其运行成本也不同,且进水氨氮浓度越高,处理成本也越高.在处理无机氨氮废水时,需向其投加碳源以满足微生物的生长需求.设计的处理能力普遍高于1000m3/d,进水氨氮浓度在100~300mg/L附近的废水可降到8mg/L以下,去除率普遍达到90%以上.
A2/O工艺
A2/O工艺亦称A-A-O工艺,即通常所说的厌氧-缺氧-好氧工艺,在厌氧池的主要功能为释放磷,使污水中磷的浓度升高,降低部分NH3-N的浓度;在缺氧池中,反硝化细菌利用污水总的有机物作为碳源,将回流混合液中带入大量NO3-N和NO2-N还原为N2释放至空气;在好氧池中,有机氮被氨化继而被硝化,使NH3-N浓度显著下降.表2列举了部分A2/O工艺对工业氨氮废水的研究案例.
A2/O工艺对工业废水处理的进水氨氮浓度负荷略高于A/O工艺,且表2出水氨氮浓度普遍能达到15mg/L以下,去除率普遍在90%以上.在实际处理过程中,该工艺在应用中的处理能力普遍在1000m3/d以上,在进水氨氮浓度较高的情况下,运行成本也较高.
传统的生物脱氮工艺
A/O工艺
在厌氧池中异养菌将污水中的可溶A/O即厌氧-好氧工艺,又称为前置反硝化生物脱氮工艺
在厌氧池中异养菌将污水中的可溶性有机物和淀粉等悬浮物水解为有机酸.随后进入好氧池自养菌在充足供氧条件下进行硝化作用将氨态氮氧化为硝态氮,再通过回流返回至厌氧池,在缺氧条件下,异氧菌在缺氧条件下进行反硝化作用将硝态氮还原为分子态氮,从而实现污水无害化处理.表1列出了A/O处理工艺对氨氮工业废水的研究案例.
通过对比可以看出,针对不同种类的工业氨氮废水,A/O工艺在实际的工业处理中,针对不同的工业废水,设计的处理能力不同,其运行成本也不同,且进水氨氮浓度越高,处理成本也越高.在处理无机氨氮废水时,需向其投加碳源以满足微生物的生长需求.设计的处理能力普遍高于1000m3/d,进水氨氮浓度在100~300mg/L附近的废水可降到8mg/L以下,去除率普遍达到90%以上.